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Approximate analytic solutions for noise-induced coherent oscillations
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Noise-induced coherent oscillations in autonomous nonlinear systems, recently found in numerical studies
by Ganget al. [Phys. Rev. Lett71, 807 (1993], are explained in simple terms by obtaining approximate
analytical solutions in the weak-noise regime. The creation by noise of asymptotic collective oscillations in
deterministic systems near saddle-node bifurcation points is understood as a process of generation of probabil-
ity currents in effective monodimensional potentials. The knowledge of the functional dependence of the mean
frequency on the parameters of the system gives insight into the mechanisms responsible for specific features
of these resonancelike responses to ndiS&063-651X97)01712-1

PACS numbd(s): 05.40:+j, 05.20~y

I. INTRODUCTION models studied in Ref.l] are presented. Starting from the
Fokker-Planck equations, it is shown that in the weak-noise
In the study of complex nonequilibrium systems, a com-regime, probability distribution functions can be factorized
mon strategy is the elimination through a process of averagand stationary solutions can be obtained. The drastic effects
ing of dynamically nonrelevant variables to reduce the sysinduced by noise are explained in simple terms by obtaining
tems to equivalent ones of only a few degrees of freedom@n effective mean frequency for the systems. Some of the
When there is spatial uniformity, the time evolution of theseMost interesting results of RefL] were obtained for values
contracted systems is usually governed by ordinary differenof noise widely out of the small-noise region; for example,
tial equations. Nonlinearity in them can give rise to a richth€ Peak structure in the dependence of the frequency on the
dynamics in which limit cycle oscillations, bistability, mul- "°IS€ strength, and the disappearance of the preferred finite

tistability or chaos can be present. In the stochastic approacﬂequency' were found only for high noise intensities. It is

: . . hown here th weak-noi roximation can giv m
fluctuations from the averages, coming from internal or ex>190 ere that a weak-noise approximation can give some

. . : clues to understanding these effects, and, consequently, can
ternal sources of noise, are considered, and in many case

. o ) .ﬁqglp in the design of models in which, by modifying the
safisfactory description of the systems in terms of determ'nfunctional structure of the deterministic systems or the prop-

|st.|c equations modyﬂed by stochastic fo.rces IS pos§|ble. _"érties of the stochastic forces, these effects can be controlled.
this framework, the interplay between noise and nonlinearity e outline of the paper is as follows. Aspects of models

may result in highly nontrivial effects, such as noise-inducedpat are especially relevant to the role played by noise in the
transitions and stochastic resonance. The ubiquitous charagynamics are analyzed in Sec. II. In Sec. lIl, a treatment of
ter Of f|UCtuati0I’lS, and theil’ tl’aditiona| I’Ole in producing del-the Fokker-Planck equations in a weak-noise approximation

eterious effects, justify the interest in studies that can revegk given, and explicit solutions are presented. Finally, in Sec.
their ability to induce coherent behavior. In fact, there is alv some conclusions are summarized.

wide variety of physical contexts in which cooperative ef-
fects of noise and nonlinearity can be relevant, and possible
practical applications of these studies range from the imple-
mentation of methods to control oscillating chemical reac- Models 1 and 2, presented in Réfl] as sets of two
tions to the understanding of self-organization in biologicalcoupled Langevin equations with additive Gaussian white-
processes or the improvement of the performance in laseroise terms, have in common the nongradient character of
systems. the drift terms. In fact, the deterministic parts of both sys-
Recent work in this field1] has been dedicated to study- tems present, for a certain value of a parameter of control, a
ing the influence of additive white noise on the coherentsaddle-node bifurcation that gives rise to a stable nonuniform
motion of bidimensional autonomous nonlinear systems ing¢ircular limit cycle. The potential conditiog] are therefore
side saddle-node bifurcation regions. Numerical studies ohot satisfied even in the case of equal noise strength in the
corresponding systems of coupled Langevin equations regwo equations and, as a consequence, rotational probability
vealed the existence of effects such as noise-induced frélows can occuf3]. There is a difference in stability charac-
guency shift when the deterministic system has a limit cycleter: in a certain range of the parameter of control, model 1 is
and noise-induced coherent oscillations in the absence of laistable, while model 2 is monostable; this is not relevant for
deterministic limit cycle. A resonancelike character in thesehe role played by noise in inducing asymptotic oscillations.
responses to noise was detected, and this behavior in autonigloreover, the similar functional structure of both models
mous systems was compared with the phenomenon of stallows a parallel treatment and a common discussion, so we
chastic resonance in driven nonlinear systems. have opted to focus on model 1, while occasionally present-
In this paper, approximate analytical results for the twoing results for model 2.

II. MODELS
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In polar coordinates, which are directly related to vari- _ D\ 2
ables normal and tangential to the possible limit cy¢kds r=r(1—r2)+z+ > Ta0,
the Langevin equations for model 1 in the Stratonovich in- @
terpretation are written as _ D\ 21
6=b—r?coq26)+ 5 FFZ(t),

r=r(1—r2)+cog 6)Wy(t)+sin( 6)Ws(t),

(1)  whereI'y(t) and I',(t) are again uncorrelated Gaussian

. sing coy ite-noi .
H=b—r2cog26)— Twl(t)+ : Wa(t), white-noise terms:

(Ti(1))=0,

8
where W, (t) and W,(t) are uncorrelated Gaussian white- , , . ®
noise terms with moments (TiOTj(t))=26;6(t—-t"), i,j=12.

(W,(1))=0, It must be noted that only in the case whBp=D, is this

simplified description possible, and in fact we will see that to
leave this restriction can lead to a different qualitative behav-
ior in the system.
) . ) . A key point in the analysis is to realize that, in both mod-
For model 2 the equation that gives the time evolution ofg|g the'equation for the angular variable for a fixed value of
the radial variable is exactly the same, and there are only . re5nonds to a process of diffusion in a biased periodic
differences with respect to model 1 in the second equatior,gtential with different amplitude and periodicity in each
We then have, for model 2, case. Another important feature of both models is that, in the
) alternative description that we have found, the first equation
r=r(1—r?)+cog 6)W,(t)+sin()Wy(t), has additive white noise and does not dependdpso the
3 probability density for reaches its stationary state indepen-
dently of the time evolution o®. It can be seen that the
spurious drift term that comes from interpreting in the Stra-
tonovich sense the multiplicative character of the noise terms
The corresponding Fokker-Planck equations for the probl? EQ- (1) has been incorporated in an effective way in the
ability densitiesP(r,8,t) are readily obtained. Restricting Qetermmlsuc dynamics in this alternative description, alter-

ourselves to the particular case studied in REf], ing the size of the limit cycle if this is present, and making
D,=D,=D, we have the unstable equilibrium point at the origin disappear. The

corresponding Fokker-Planck equation fowith the bound-
aP(r,0,1) d(D,P) d(D,P) 4D, P) 3D yyP) ary condition of zero probability current, imposed by the
pm == T 0 + 02 + FY reflecting walls at the extremes of the radial range, can easily
@) be solved to obtain the distribution function for the stationary
statePgqr) [3],

(Wi(hWw;(t"))=D;g;6(t—t"), i,j=1,2. 2

. sing cosy
0=b—rcosh— Twl(t) + Twz(t).

being, for model 1,

2r o, o2
Pss(r)zﬁe (re=1) /2D’ (9)
D
Dr=r(1-r3)+ -, L o
2r 5) where the normalization constaNtis given by
—p—r2 » 7D\ 2 1
D,=b—r%cog26), N /_ZDJ eyzdy=<_) erfc( ~ _)
— 112D 2 \J2D
and (10)
D erfc(x) being the complementary error functiQb.
Drrzfi This probability density reaches its maximum value for

(6)

1
D1 rmax=$\/1+\/1+2D, (1)
2712

We see that, even in this particular case, the system, bgnd has a variance given pg]

cause of the nongradient character of its deterministic part, D
does not meet the potential conditions, and therefore it is not (Ar?y=(r2)—(r)?=1+ —e ¥®
trivial to find the stationary solution. Instead of trying to N
solve the bidimensional Fokker-Planck equation, we have 34 2
@G_UZDZ ( _ ;) (12)
N 2 2\/5 ,

D o=

obtained from it the following set of simpler Langevin equa- _
tions for an equivalent systef2]:
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: ‘ : ' ' ' I1l. WEAK-NOISE APPROXIMATION

8.00 [ . A. Stationary probability distribution function

It can be showr 3] that for small values of the noise
intensity, D<1, the variance oPg{r), given by Eq.(12),
600 L (a) 4 can be approximated by

* * (A=)~ ()= +O(D?. (19

4.00 - B

PSS (r)

Therefore, in the weak-noise regime, and independently
- & of the relative magnitude of the time scales involved in each
equation, we can, as a first-order approximation, replame

200 - 1 its maximum probability value in the equation that gives the
* time evolution off, and consequently, factorize the probabil-
ity distribution function corresponding to the stationary state

| \(VL Il Il 1
%00 1.00 2.00 3.00 4.00 Psdr,0)=Psd)Psd ;I may- (16)

r

Of course, higher-order corrections must take into account
the role of the radial fluctuations in the equation for the an-
gular variable. In particular, these fluctuations become espe-

o ) -~ cially relevant where the phase motion is slowed down. Ap-
whereZ,(x) is given in terms of the modified Bessel func- proximations similar to this one are frequently made in the

FIG. 1. Stationary probability density for the radial variable
Psr), for D=10"2 (a), D=0.1(b), andD=2 (c).

tions of fractional ordef5] by study of nonlinear self-excited oscillations in radio engineer-
ing [3]. It is worthwhile to point out that a linearization in
Z,(X) =x3’2e2X2[K3,4( 2x2) — K 14(2x2)] for x>0, is possible, but it is not neccessary because we have the exact

solution, and that, in spite of the small intensity of noise, a
linearization in# is not possible because the effects we want
and to explain are directly related to a change in stability in the
angular variable, which, given the parameters chosen for the
) system, can even be induced by small noise. For the same
Z5(X) = |X[¥26P T K 314 2X2) + K 17 2X2) + /21 34(2%?) reason, a nonequilibrium potential that can explain in a uni-
fied way the qualitatively different behaviors induced by
13 noise in the asymptotic dynamics cannot be found. On the
other hand, the similarity in the time scales in both equations
prevents the application of any adiabatic approximation or
The results for the variable in model 2 are exactly the Slaving principle. The results obtained will show that with
same. this approximation we focus on the characteristics of the sys-
In Fig. 1, Ps{r) is represented for different values of the tem that are relevant to give an explanation for the findings
noise strengttD. For small noise D<1), the distribution ~ ©f Ref.[1]. _ _ _ _
function is very sharp, so we can conclude that in the sta- The resulting effective equation fa, which of course is
tionary state the system is practically located jp,. AsD  ©nly valid as a tool to calculate the stationary solution, is
increases, the maximum of the function is shifted to higher D U2
values ofr, gnd the distribution pecomes_ wider. Therefore ,_, _ L1+ \/M)cos(Z&H T(t),
the system is no longer located; instead it explores a larger 1++/1+2D
range of values of the radial coordinate arougg,. It can (17
also be seen that although valuesroEmaller than 1 are
possible for the system, any increaseDnproduces a net With
shift of probability to larger values aof because of the asym-

+ 21 4(2x3)] for x<O.

metry of the distribution. (I'(1))=0, 19
In Sec. lll we present a method to obtain approximate , ,
expressions for the stationary probability distribution func- (FOr))=26(t=t").

tion Pgqr,#) which are valid in the small-noise regime. By

now, we have obtained analytical solutions for It is interesting to note that equations very similar to this

one, and almost identical to the one corresponding to model
2, have appeared in very different physical contexts such as
27 nonlinear self-excited oscillations in radio engineer|i3g,
Psér)zfo Psgr,0)do (14 guantum noise in ring laser gyrd§], or thermal noise in
Josephson junctions in the high-friction regif@. There is
also a similarity between models 1 and 2, and the equations
which are valid for any value of the noise intensity. for the phase and intensity of a laser with a squeezed reser-
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voir [8]. For that laser system, the deterministic dynamicsh>1, it can be seen that the probability concentrates around
above threshold is given by a gradient system with an attracthe limit cycle that exists in the deterministic system, and
ing set, and the lack of detailed balance is caused by differenhat, by increasind, the system becomes less located at the
noise intensities in the two Langevin equations. maxima of the distribution, so the nonuniformity of the limit
From Egs.(17) and (18), the Fokker-Planck equation is cycle is attenuated when the noise is increased. The effect of
easily obtained, and, in terms of the probability currentthe spurious drift term is hardly noticeable given the small
G(46,t), a concept that will be useful to discuss detailed bal-values of the noise intensities. Fox 1, which corresponds

ance and calculate the mean frequetgy, it can be written
as

PO IGO0 _

ot a0 ' (19
with
IP(6,t)
G(60,t)=[b—f(D)cog26)]P(0,t)—g(D) TR
(20)
where we have definef{D) as
f(D)=3(1+1+2D), (21
andg(D) as
D
(22)

D)= ———.
RPN s

Given the angular character of the variableand the fact

that full rotations cannot be distinguished, periodic boundar

conditions are added:

P(6,t)=P(6+2m,t). (23
The stationary solution is readily obtained:
. 1 (b/g) 6— (f/2g)sin(26)
Psq 01rmax):N_1€
0+2m X
X J e~ (blg)y+(f12g)sin(2¢) 4 W, (29
4
where the normalization constaNy is given by
N, =4m2e *™9costbm/2g)|lipq(T/29)|%, (25

andl;,(z) being the modified Bessel functions of imaginary

order[5].
The corresponding results for model 2 are

1 1/2, i
e e
0+2
|
0

Np=4m2e™ ™9l iy,q(F¥7g)|.

T~ (blg)y+ (FY2g)sing
e~ (/o 9Sdy,  (26)

with
(27)
In Fig. 2, the probability distribution functio®s{r, )

to the existence of a couple of stationary solutions for the
asymptotic dynamics of the deterministic system, it can be
seen that, for a certain value Bf, there is a nonzero prob-
ability of finding the system in any point of a closed trajec-
tory in the configuration space. There is again a spreading of
probability for increasingD. The results for the mean fre-

quency( 0) will confirm that in this case the periodic attrac-
tor is recovered.

The corresponding results for model 2 are presented in
Fig. 3. The only significant difference between both models
is that because of the monostable character of model 2,
higher values oD are needed to generate rotational prob-
ability flows. This can be checked by analyzing the depen-
dence of the mean frequency on noise in each model.

When these results are compared with the stationary dis-
tribution functions found in other studies about the influence
of noise on systems with limit cycld®,10], one main dif-
ference stands out: instead of the crater-shaped distribution
with smooth changes of probability along the ridge that cov-
ers the deterministic trajectory, typical of systems with sepa-
rability of variables and uniformity along the cycle, we have

ere that, because of the strongly nonuniform character of
he cycles that appear via saddle-node bifurcat{dids, the
probability concentrates at two peaks centered at the most
probable positions. Another characteristic of models 1 and 2
is that, although there is a coupling of variables, the time
evolution of the radial variable does not depend on the an-
gular variable, and, as a consequence, the transverse width of
the probability distribution is the same along the limit cycle.
This is in contrast to the features of a different model re-
cently studied in Ref[12]. There, nonuniformity and cou-
pling between radial and angular motions were considered
for systems with a stable limit cycle far from a Hopf bifur-
cation point, and a relation between the velocity along the
cycle and the width of the distribution in the transverse di-
rection was obtained.

Additional information about the asymptotic behavior of
the system can be obtained by studying the effective mean
frequency. This is the aim of Sec. Il B.

B. Mean frequency in the stationary state

The mean frequency of the system is obtained averaging
the effective Langevin equation fo# with the stationary
probability distribution function. Given the zero mean value
of the noise term, we obtain

(6)=(b—f cog20)), (28)
and it can easily be shown that, in terms of the probability

current in the stationary state, this mean frequency can be
written as

for model 1 is represented for different values of the param-

eterb, and for different values of the noise strendth, For

(0)=27Ggg. (29)
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(a)

FIG. 2. Stationary probability densits<r,8), for model 1 forb=0.99 andD=10"2 (a), b=0.99 andD=102 (b), b=1.01 and
D=10 3 (c), andb=1.01 andD =102 (d).

Therefore, any nonzero value f¢#) implies the existence of for the stochastic system that increasing value® ahduce
a probability current in the stationary state, and consequentliarger mean frequencies. In the liniit—0, the mean fre-

the lack of detailed balance in the system. quency tends to the mean frequency of the limit cycle. For
Once the probability distribution functioRsq 8;r .0 is  b<f(D), which corresponds to locking in the deterministic
known, Ggsis easily obtained, and consequer(tigz) system, we see that the unlocking of the stochastic system
takes place for values @ larger than a threshold value that
: g sinh(bw/g) y depends on the parameters of the system. Therefore it can be
(0)= ;m“ib&g(”z@m ' (80 said that noise causes the nonreduced system to anticipate
the bifurcation. Subsequent increasesDirnresult in higher
The corresponding result for model 2 is values for(é}. It is important to notice that the threshold

value depends on the relative magnitudebofand f(D),

higher values ofD being necessary to unlock the system
whenb/f(D) decreases. From this analysis the twofold ef-
fect of noise in the system is clear: on one hand, it tends,

In Fig. 4, (#) for model 1 is represented for different depending on the parameters, to unlock and/or increase the
values ofb andD. It can be seen that the system is locked orfrequency; this can be seen by artificially giving a fixed
unlocked depending not only oh, but also onD. For value tob/f(D). On the other hand, there is the opposite
b>f(D), which for the deterministic system corresponds totendency coming from the functional dependencé ohD.
unlocking and a spectrum characterized by sharp lines at theéhis second aspect is hardly relevant in the small noise re-
fundamental frequency and its harmonics, we have obtainegime, but it can help to understand at least qualitatively the

(8= Dsinbbr/g)|log(FPa)| 2 (3D
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(a)

FIG. 3. Stationary probability densitpsgr,6), for model 2 forb=0.99 andD=10"2 (a), b=0.99 andD=10 2 (b), b=1. and
D=10"2 (c), andb=1. andD=10"2 (d).

behavior for high noise. It must be emphasized that a stron-
ger dependence df on D can magnify the influence of this
aspect on the dynamics. L
For model 2, the effective equation for the variallés
the same as the equation for the phase of the beat signal ©%
generated by a ring laser gyro. In Rgb] the spectrum for
this parallel model was obtained analytically fo¥1, and
also for parameters corresponding to locking; and numeri-
cally for the more interesting regidm=1, in which there is
a noise threshold value for unlocking, and that corresponds
to the bifurcation region of models 1 and 2. For small noise
these spectra have the same qualitative features as the one:
obtained in Ref[1]: basically, when noise is increased there -
is a shift of the peak frequency to higher values, and an

increase in the width of the peak. For certain values of the .04
parametersD—0 andb>1, higher harmonics can be seen. L s

0.20 T T T T

0.12 -

0.08

Mean Frequency
T

For very high noise the mean frequency would reach a limit )

value given by the biab: the noise makes the existence of 0.00 ! ! T —

the periodic potential irrelevant and causes the bias to be the w00 0 e 200
dominant feature. In Fig. 5, the mean frequency for model 2

is represented for different values lofandD. FIG. 4. Mean frequency 6) for model 1 against logD for

We do not have analytical results for the high-noise reb=1.01(a), b=1. (b), andb=0.99 (c).
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0.20 . . that correspond to the regions of maximum probability take
place mainly through the region of small rather than

T through the circle, and consequently the stochastic counter-
016 - part of the limit cycle, the circle hump, disappears. The peak
1 structure in the dependence of the frequencyDoand the
disappearance of the preferred frequency can also be quali-
tatively understood: opposed to the shift to higher values of
the frequency, which can be understood through the increase
in the mean frequency caused by noise, there is the increas-
ingly incoherent behavior that enlarges the width of the peak
in the spectrum, lowers the value of the peak frequency, and
eventually gives rise to the disapearance of the preferred fre-
quency. It must be emphasized that whereas the increase in
the frequency wittD is a consequence of the nonlinear char-
acter of the system: noise tends to unlock the system by
favoring diffusion in the effective biased periodic potential;

(a)

0.12

0.08

Mean Frequency

0.04

0.00 ‘ L . the lowering of the peak frequency and the suppression of
-5.00 -4.00 loge (O) -3.00 -2.00 the coherent oscillation can also be detected in linear systems
* since they are a consequence of the loss of coherence. To

FIG. 5. Same as Fig. 4, for model 2. check the validity of these ideas, let us consider the follow-

ing system, which is directly related to the conjectured
gime, so we cannot explain the peak structure in the deperitechanism of loss of coherence for models 1 and 2, and can
dence of the frequency ob, and the disappearance of the also represent the time evolution of the angular variable of a
coherent oscillations. Nevertheless, the physical picture obuniform limit cycle when noise is added,
tained for small noise give us some clues to speculate about . 1/
the qualitative behavior of the system for hibh As can be 6=b+D(1), (32)
seen in Fig. 1, whelD is increased, the system explores in_ .
its stationary state a larger range in the radial variable, th&’ ith

region of maximum probability being shifted to higher val- (T (1))=0,

ues. In this case we cannot replace the Langevin equa- (33

tion for 6 by its maximum probability value, since the width (T(HT(t"))=258(t—t").

of the radial distribution cannot be neglected, as can be seen

studying the variance in Eq12). Studying the system of In this case the mean frequency does not depend on noise,

equations(7), which are exact for any value of the noise (y\=p and the spectrum, which was obtained analytically
intensity, provides us with some ideas to conjecture whichy, Ref.[6], reveals the existence of a preferred frequency that
mechanisms are responsible for the nontrivial behavior of thgecreases with increasing, and vanishes above a noise
system. First of all, we see that negf,,, the time evolution  yreshold that depends on the paramétefherefore it is

of the two variables, radial :.;md angular, is slow as compared|ear that in this last regime the dynamics is dominated by
to the evolution for smaller: the system spends more time the random term. This gives arguments of plausibility to the
near the asymptotic value of the deterministic radial equagonjectures previously made for models 1 and 2 for high
tion, and any increase inimplies a higher amplitude of the gise.

effective periodic potential in the angular variable, and con- |, this framework it is also possible to understand why the
sequently larger barriers to t_he generanon_of probab|I|t_y CUrresonancelike behavior is not seen for small valuels [f]:
rents. Therefore, we can think of two regions of maximumne vajue ofD needed to generate the probability current is

probability, centered ony, and the two corresponding val- gq high that it prevents the appearence of any preferred fre-
ues of §, from which noise induced excursions take place.quency in the spectrum.

Obviously the increase of,, gives rise to a shift in the
maximum probability values fo#: this explains the chang-
ing orientation of the line of maxima observed in Fig. 4 of
Ref.[1]. In this way we can understand how the tendency to The main conclusion of this work is the idea that the
generate rotational probability flows, and increase the meanontrivial effects found in the dynamics of the systems stud-
frequency that comes from the stochastic forces, can bied are a consequence of the interplay between the tendency
counterbalanced by the larger localization of the system foof noise to unlock the systems and/or increase their fre-
higher values of . Second, it is clear from Egé7) that when  quency, and the loss of coherence also caused by noise that
the system reaches the region of smalik experiences large tends to diminish the frequency and destroy the collective
uncorrelated jumps i that favor the exchange of probabil- oscillations.

ity through the central region and lead to the loss of coher- The mechanism of recovery of the limit cycle when it is
ence. This qualitative picture allows us to understand theot present in deterministic systems is quite clear in the
topological changes in the probability distributions detectedveak-noise approximation employed here: additive Gaussian
in Ref. [1] when D is increased. In effect, for sufficiently white noise can induce a probability current in a one-
large noise, exchanges of probability between the two basindimensional system with a periodic potential modified by a

IV. CONCLUSIONS
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bias term(the term linked to the parametiein models 1 and a noninvertible diffusion matrix, which as models 1 and 2,
2). In this framework, the system is unlocked when the noiséhas nongradient drift terms, probability currents can exist,
intensity reaches a certain threshold, and any additional inand, because of the nonlinearity of the problem, in addition
crease in noise gives rise to an increase in frequency, ari@ the fundamental frequency, sharp lines corresponding to
also to a spreading of the peaks in the spectrum. In terms dhe higher harmonics can also be seen in the spectrum. How-
the bidimensional system, the unlocking is interpreted as al€Ver, there is no noise-induced shifts of these frequencies as
lowed by the specific character of the bifurcation that givedhey are fixed at the frequency of the driving term and its
rise to the cycle. In effect, as opposed to a Hopf bifurcation’armonics, so the peak structure in the signal-to-noise ratio
in which a limit cycle becomes smaller and finally collapsesas a f“”Ct'Of! of noise ha;s t_herefore an origin different from
to a fixed point, in a saddle-node bifurcation the limit cycle that responsible for the findings of Re¢d].

becomes slower and slower and eventually vanishes at a fi- A;S we én?ntioneg I2n Sec. |, sets_oftre]qlijatlon_s Eorre?pond-
nite trajectory, allowing noise to activate a circulation in the'NY 10 MOGEIS 1 and < can appear in the description ot com-
structure of the attractor. plex systems in which a process of averaging over dynami-

The condition of equal noise strengths in the two equa_caIIy nonrelevant variables has reduced the dimensionality of
tions of each model is a key point in having coupled Vari_the problem. The nongradient character of the drift terms,

ables with a deterministic dynamics for one of themthat which can have its phyS|caI ongin in the averaging over vart-
ables whose dynamics are not time reversal invariant, is a

depends on noise but does not depend on the second va . - ;
able. This fact clarifies the mechanism behind the drastidccc€sSarny pond|t|0n for the appearance of limit cycles In _the
cular motion and also for the appearance of irreversible

effects of noise in the systems studied, and in a certain exterit lati in the stochasti ; hen th ise intensi
allows the control by noise of the time evolution of analog circuiations in the stochastic system when the noise intensi-
systems. ties are the same in the two equations of the reduced system.

The resemblance of these results to the phenomenon gfs a lack of detailed balance can also be reached in a bidi-
stochastic resonance is clear. Nevertheless, it must be e 1ensional gradient system by working with noise terms with

phasized that in models 1 and 2 of Rf] the peak structure ifferent r(]:ha_ratlzten_stltcsffo_r eaﬁrlhvana.ble, which 'St p?ssmle
in the signal-to-noise ratio as a function of noise is basicall rom a physical point of view 1I there 1S some control over

a consequence of the definition of this ratio in terms of theexternal sources of noise, it would be interesting to analyze if

frequency, since, as the widths of the peaks in the spectruﬁOise can induce the stochastic counterpart of a limit cycle in
become Iérger f(,)r higheD, it is the peak structure in the a system whose deterministic dynamics cannot present peri-

frequency that is the dominant feature. The most typical sceQd'C attractors.
nario for stochastic resonance, the driven quartic double well

in the high-friction regime and with Gaussian white noise,

can be converted in an autonomous system by embedding it This work was supported by a grant from DireatiGen-
in a bidimensional system with the angle variable having zeral de Investigacio Cientfica y Tecnica of Spain(Project
trivial time evolution[13]. In this bidimensional system with No. PB93-0578
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