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Approximate analytic solutions for noise-induced coherent oscillations
in autonomous nonlinear systems

J. Plata
Departamento de Fı´sica Fundamental y Experimental, Universidad de La Laguna, La Laguna E38204, Tenerife, Spain

~Received 12 May 1997!

Noise-induced coherent oscillations in autonomous nonlinear systems, recently found in numerical studies
by Ganget al. @Phys. Rev. Lett.71, 807 ~1993!#, are explained in simple terms by obtaining approximate
analytical solutions in the weak-noise regime. The creation by noise of asymptotic collective oscillations in
deterministic systems near saddle-node bifurcation points is understood as a process of generation of probabil-
ity currents in effective monodimensional potentials. The knowledge of the functional dependence of the mean
frequency on the parameters of the system gives insight into the mechanisms responsible for specific features
of these resonancelike responses to noise.@S1063-651X~97!01712-1#

PACS number~s!: 05.40.1j, 05.20.2y
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I. INTRODUCTION

In the study of complex nonequilibrium systems, a co
mon strategy is the elimination through a process of ave
ing of dynamically nonrelevant variables to reduce the s
tems to equivalent ones of only a few degrees of freed
When there is spatial uniformity, the time evolution of the
contracted systems is usually governed by ordinary differ
tial equations. Nonlinearity in them can give rise to a ri
dynamics in which limit cycle oscillations, bistability, mu
tistability or chaos can be present. In the stochastic appro
fluctuations from the averages, coming from internal or
ternal sources of noise, are considered, and in many cas
satisfactory description of the systems in terms of determ
istic equations modified by stochastic forces is possible
this framework, the interplay between noise and nonlinea
may result in highly nontrivial effects, such as noise-induc
transitions and stochastic resonance. The ubiquitous cha
ter of fluctuations, and their traditional role in producing d
eterious effects, justify the interest in studies that can rev
their ability to induce coherent behavior. In fact, there is
wide variety of physical contexts in which cooperative e
fects of noise and nonlinearity can be relevant, and poss
practical applications of these studies range from the im
mentation of methods to control oscillating chemical re
tions to the understanding of self-organization in biologi
processes or the improvement of the performance in la
systems.

Recent work in this field@1# has been dedicated to stud
ing the influence of additive white noise on the coher
motion of bidimensional autonomous nonlinear systems
side saddle-node bifurcation regions. Numerical studies
corresponding systems of coupled Langevin equations
vealed the existence of effects such as noise-induced
quency shift when the deterministic system has a limit cyc
and noise-induced coherent oscillations in the absence
deterministic limit cycle. A resonancelike character in the
responses to noise was detected, and this behavior in au
mous systems was compared with the phenomenon of
chastic resonance in driven nonlinear systems.

In this paper, approximate analytical results for the t
561063-651X/97/56~6!/6516~8!/$10.00
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models studied in Ref.@1# are presented. Starting from th
Fokker-Planck equations, it is shown that in the weak-no
regime, probability distribution functions can be factoriz
and stationary solutions can be obtained. The drastic eff
induced by noise are explained in simple terms by obtain
an effective mean frequency for the systems. Some of
most interesting results of Ref.@1# were obtained for values
of noise widely out of the small-noise region; for examp
the peak structure in the dependence of the frequency on
noise strength, and the disappearance of the preferred fi
frequency, were found only for high noise intensities. It
shown here that a weak-noise approximation can give so
clues to understanding these effects, and, consequently
help in the design of models in which, by modifying th
functional structure of the deterministic systems or the pr
erties of the stochastic forces, these effects can be contro

The outline of the paper is as follows. Aspects of mod
that are especially relevant to the role played by noise in
dynamics are analyzed in Sec. II. In Sec. III, a treatmen
the Fokker-Planck equations in a weak-noise approxima
is given, and explicit solutions are presented. Finally, in S
IV some conclusions are summarized.

II. MODELS

Models 1 and 2, presented in Ref.@1# as sets of two
coupled Langevin equations with additive Gaussian wh
noise terms, have in common the nongradient characte
the drift terms. In fact, the deterministic parts of both sy
tems present, for a certain value of a parameter of contro
saddle-node bifurcation that gives rise to a stable nonunifo
circular limit cycle. The potential conditions@2# are therefore
not satisfied even in the case of equal noise strength in
two equations and, as a consequence, rotational probab
flows can occur@3#. There is a difference in stability charac
ter: in a certain range of the parameter of control, model 1
bistable, while model 2 is monostable; this is not relevant
the role played by noise in inducing asymptotic oscillation
Moreover, the similar functional structure of both mode
allows a parallel treatment and a common discussion, so
have opted to focus on model 1, while occasionally prese
ing results for model 2.
6516 © 1997 The American Physical Society
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56 6517APPROXIMATE ANALYTIC SOLUTIONS FOR NOISE- . . .
In polar coordinates, which are directly related to va
ables normal and tangential to the possible limit cycles@4#,
the Langevin equations for model 1 in the Stratonovich
terpretation are written as

ṙ 5r ~12r 2!1cos~u!W1~ t !1sin~u!W2~ t !,

~1!

u̇5b2r 2cos~2u!2
sinu

r
W1~ t !1

cosu

r
W2~ t !,

where W1(t) and W2(t) are uncorrelated Gaussian whit
noise terms with moments

^Wi~ t !&50,

^Wi~ t !Wj~ t8!&5Did i j d~ t2t8!, i , j 51,2. ~2!

For model 2 the equation that gives the time evolution
the radial variable is exactly the same, and there are o
differences with respect to model 1 in the second equat
We then have, for model 2,

ṙ 5r ~12r 2!1cos~u!W1~ t !1sin~u!W2~ t !,

~3!

u̇5b2rcosu2
sinu

r
W1~ t !1

cosu

r
W2~ t !.

The corresponding Fokker-Planck equations for the pr
ability densitiesP(r ,u,t) are readily obtained. Restrictin
ourselves to the particular case studied in Ref.@1#,
D15D2[D, we have

]P~r ,u,t !

]t
52

]~Dr P!

]r
2

]~DuP!

]u
1

]2~Drr P!

]r 2 1
]2~DuuP!

]u2 ,

~4!

being, for model 1,

Dr5r ~12r 2!1
D

2r
,

~5!

Du5b2r 2cos~2u!,

and

Drr 5
D

2
,

~6!

Duu5
D

2

1

r 2 .

We see that, even in this particular case, the system,
cause of the nongradient character of its deterministic p
does not meet the potential conditions, and therefore it is
trivial to find the stationary solution. Instead of trying
solve the bidimensional Fokker-Planck equation, we h
obtained from it the following set of simpler Langevin equ
tions for an equivalent system@2#:
-

-

f
ly
n.

-

e-
rt,
ot

e

ṙ 5r ~12r 2!1
D

2r
1S D

2 D 1/2

G1~ t !,
~7!

u̇5b2r 2cos~2u!1S D

2 D 1/21

r
G2~ t !,

where G1(t) and G2(t) are again uncorrelated Gaussia
white-noise terms:

^G i~ t !&50,
~8!

^G i~ t !G j~ t8!&52d i j d~ t2t8!, i , j 51,2.

It must be noted that only in the case whenD15D2 is this
simplified description possible, and in fact we will see that
leave this restriction can lead to a different qualitative beh
ior in the system.

A key point in the analysis is to realize that, in both mo
els, the equation for the angular variable for a fixed value
r corresponds to a process of diffusion in a biased perio
potential with different amplitude and periodicity in eac
case. Another important feature of both models is that, in
alternative description that we have found, the first equat
has additive white noise and does not depend onu, so the
probability density forr reaches its stationary state indepe
dently of the time evolution ofu. It can be seen that the
spurious drift term that comes from interpreting in the St
tonovich sense the multiplicative character of the noise te
in Eq. ~1! has been incorporated in an effective way in t
deterministic dynamics in this alternative description, alt
ing the size of the limit cycle if this is present, and makin
the unstable equilibrium point at the origin disappear. T
corresponding Fokker-Planck equation forr with the bound-
ary condition of zero probability current, imposed by th
reflecting walls at the extremes of the radial range, can ea
be solved to obtain the distribution function for the stationa
statePSS(r ) @3#,

PSS~r !5
2r

N
e2~r 221!2/2D, ~9!

where the normalization constantN is given by

N5A2DE
21/A2D

`

e2y2
dy5S pD

2
D 1/2

erfcS 2
1

A2D
D ,

~10!

erfc(x) being the complementary error function@5#.
This probability density reaches its maximum value fo

r max5
1

A2
A11A112D, ~11!

and has a variance given by@3#

^Dr 2&5^r 2&2^r &2511
D

N
e21/2D

2F ~2D !3/4

N
e21/2DZ2S 2

1

2A2D
D G 2

, ~12!
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6518 56J. PLATA
whereZ2(x) is given in terms of the modified Bessel fun
tions of fractional order@5# by

Z2~x!5x3/2e2x2
@K3/4~2x2!2K1/4~2x2!# for x.0,

and

Z2~x!5uxu3/2e2x2
@K3/4~2x2!1K1/4~2x2!1pA2I 3/4~2x2!

1pA2I 1/4~2x2!] for x,0.
~13!

The results for the variabler in model 2 are exactly the
same.

In Fig. 1, PSS(r ) is represented for different values of th
noise strengthD. For small noise (D!1), the distribution
function is very sharp, so we can conclude that in the s
tionary state the system is practically located inr max. As D
increases, the maximum of the function is shifted to hig
values ofr , and the distribution becomes wider. Therefo
the system is no longer located; instead it explores a la
range of values of the radial coordinate aroundr max. It can
also be seen that although values ofr smaller than 1 are
possible for the system, any increase inD produces a ne
shift of probability to larger values ofr because of the asym
metry of the distribution.

In Sec. III we present a method to obtain approxim
expressions for the stationary probability distribution fun
tion PSS(r ,u) which are valid in the small-noise regime. B
now, we have obtained analytical solutions for

PSS~r !5E
0

2p

PSS~r ,u!du ~14!

which are valid for any value of the noise intensity.

FIG. 1. Stationary probability density for the radial variab
PSS(r ), for D51022 ~a!, D50.1 ~b!, andD52 ~c!.
-
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e
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III. WEAK-NOISE APPROXIMATION

A. Stationary probability distribution function

It can be shown@3# that for small values of the nois
intensity,D!1, the variance ofPSS(r ), given by Eq.~12!,
can be approximated by

^Dr 2&5^r 2&2^r &25
D

4
1O~D2!. ~15!

Therefore, in the weak-noise regime, and independe
of the relative magnitude of the time scales involved in ea
equation, we can, as a first-order approximation, replacer by
its maximum probability value in the equation that gives t
time evolution ofu, and consequently, factorize the probab
ity distribution function corresponding to the stationary sta

PSS~r ,u!.PSS~r !PSS~u;r max!. ~16!

Of course, higher-order corrections must take into acco
the role of the radial fluctuations in the equation for the a
gular variable. In particular, these fluctuations become es
cially relevant where the phase motion is slowed down. A
proximations similar to this one are frequently made in t
study of nonlinear self-excited oscillations in radio engine
ing @3#. It is worthwhile to point out that a linearization inr
is possible, but it is not neccessary because we have the e
solution, and that, in spite of the small intensity of noise
linearization inu is not possible because the effects we wa
to explain are directly related to a change in stability in t
angular variable, which, given the parameters chosen for
system, can even be induced by small noise. For the s
reason, a nonequilibrium potential that can explain in a u
fied way the qualitatively different behaviors induced
noise in the asymptotic dynamics cannot be found. On
other hand, the similarity in the time scales in both equatio
prevents the application of any adiabatic approximation
slaving principle. The results obtained will show that wi
this approximation we focus on the characteristics of the s
tem that are relevant to give an explanation for the findin
of Ref. @1#.

The resulting effective equation foru, which of course is
only valid as a tool to calculate the stationary solution, is

u̇5b2 1
2 ~11A112D !cos~2u!1S D

11A112D
D 1/2

G~ t !,

~17!

with

^G~ t !&50,
~18!

^G~ t !G~ t8!&52d~ t2t8!.

It is interesting to note that equations very similar to th
one, and almost identical to the one corresponding to mo
2, have appeared in very different physical contexts such
nonlinear self-excited oscillations in radio engineering@3#,
quantum noise in ring laser gyros@6#, or thermal noise in
Josephson junctions in the high-friction regime@7#. There is
also a similarity between models 1 and 2, and the equat
for the phase and intensity of a laser with a squeezed re
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56 6519APPROXIMATE ANALYTIC SOLUTIONS FOR NOISE- . . .
voir @8#. For that laser system, the deterministic dynam
above threshold is given by a gradient system with an attr
ing set, and the lack of detailed balance is caused by diffe
noise intensities in the two Langevin equations.

From Eqs.~17! and ~18!, the Fokker-Planck equation i
easily obtained, and, in terms of the probability curre
G(u,t), a concept that will be useful to discuss detailed b
ance and calculate the mean frequency^u̇&, it can be written
as

]P~u,t !

]t
1

]G~u,t !

]u
50, ~19!

with

G~u,t !5@b2 f ~D !cos~2u!#P~u,t !2g~D !
]P~u,t !

]u
,

~20!

where we have definedf (D) as

f ~D !5 1
2 ~11A112D !, ~21!

andg(D) as

g~D !5
D

11A112D
. ~22!

Given the angular character of the variableu, and the fact
that full rotations cannot be distinguished, periodic bound
conditions are added:

P~u,t !5P~u12p,t !. ~23!

The stationary solution is readily obtained:

PSS~u;r max!5
1

N1
e~b/g!u2~ f /2g!sin~2u!

3E
u

u12p

e2~b/g!c1~ f /2g!sin~2c!dc, ~24!

where the normalization constantN1 is given by

N154p2e2bp/gcosh~bp/2g!uI ib/2g~ f /2g!u2, ~25!

andI im(z) being the modified Bessel functions of imagina
order @5#.

The corresponding results for model 2 are

PSS~u;r max!5
1

N2
e~b/g!u2~ f 1/2/g!sinu

3E
u

u12p

e2~b/g!c1~ f 1/2/g!sincdc, ~26!

with

N254p2e2bp/guI ib/g~ f 1/2/g!u2. ~27!

In Fig. 2, the probability distribution functionPSS(r ,u)
for model 1 is represented for different values of the para
eterb, and for different values of the noise strength,D. For
s
t-
nt

t
l-

y

-

b.1, it can be seen that the probability concentrates aro
the limit cycle that exists in the deterministic system, a
that, by increasingD, the system becomes less located at
maxima of the distribution, so the nonuniformity of the lim
cycle is attenuated when the noise is increased. The effe
the spurious drift term is hardly noticeable given the sm
values of the noise intensities. Forb,1, which corresponds
to the existence of a couple of stationary solutions for
asymptotic dynamics of the deterministic system, it can
seen that, for a certain value ofD, there is a nonzero prob
ability of finding the system in any point of a closed traje
tory in the configuration space. There is again a spreadin
probability for increasingD. The results for the mean fre
quency^u̇& will confirm that in this case the periodic attrac
tor is recovered.

The corresponding results for model 2 are presented
Fig. 3. The only significant difference between both mod
is that because of the monostable character of mode
higher values ofD are needed to generate rotational pro
ability flows. This can be checked by analyzing the dep
dence of the mean frequency on noise in each model.

When these results are compared with the stationary
tribution functions found in other studies about the influen
of noise on systems with limit cycles@9,10#, one main dif-
ference stands out: instead of the crater-shaped distribu
with smooth changes of probability along the ridge that co
ers the deterministic trajectory, typical of systems with se
rability of variables and uniformity along the cycle, we ha
here that, because of the strongly nonuniform characte
the cycles that appear via saddle-node bifurcations@11#, the
probability concentrates at two peaks centered at the m
probable positions. Another characteristic of models 1 an
is that, although there is a coupling of variables, the ti
evolution of the radial variable does not depend on the
gular variable, and, as a consequence, the transverse wid
the probability distribution is the same along the limit cyc
This is in contrast to the features of a different model
cently studied in Ref.@12#. There, nonuniformity and cou
pling between radial and angular motions were conside
for systems with a stable limit cycle far from a Hopf bifu
cation point, and a relation between the velocity along
cycle and the width of the distribution in the transverse
rection was obtained.

Additional information about the asymptotic behavior
the system can be obtained by studying the effective m
frequency. This is the aim of Sec. III B.

B. Mean frequency in the stationary state

The mean frequency of the system is obtained averag
the effective Langevin equation foru with the stationary
probability distribution function. Given the zero mean val
of the noise term, we obtain

^u̇&5^b2 f cos~2u!&, ~28!

and it can easily be shown that, in terms of the probabi
current in the stationary state, this mean frequency can
written as

^u̇&52pGSS. ~29!



6520 56J. PLATA
FIG. 2. Stationary probability densityPSS(r ,u), for model 1 forb50.99 andD51023 ~a!, b50.99 andD51022 ~b!, b51.01 and
D51023 ~c!, andb51.01 andD51022 ~d!.
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Therefore, any nonzero value for^u̇& implies the existence o
a probability current in the stationary state, and conseque
the lack of detailed balance in the system.

Once the probability distribution functionPSS(u;r max) is
known,GSS is easily obtained, and consequently^u̇&

^u̇&5
g

p

sinh~bp/g!

cosh~bp/2g!
uI ib/2g~ f /2g!u22. ~30!

The corresponding result for model 2 is

^u̇&5
g

p
sinh~bp/g!uI ib/g~ f 1/2/g!u22. ~31!

In Fig. 4, ^u̇& for model 1 is represented for differen
values ofb andD. It can be seen that the system is locked
unlocked depending not only onb, but also onD. For
b. f (D), which for the deterministic system corresponds
unlocking and a spectrum characterized by sharp lines a
fundamental frequency and its harmonics, we have obta
tly

r

he
ed

for the stochastic system that increasing values ofD induce
larger mean frequencies. In the limitD→0, the mean fre-
quency tends to the mean frequency of the limit cycle. F
b, f (D), which corresponds to locking in the determinist
system, we see that the unlocking of the stochastic sys
takes place for values ofD larger than a threshold value tha
depends on the parameters of the system. Therefore it ca
said that noise causes the nonreduced system to antic
the bifurcation. Subsequent increases inD result in higher

values for^u̇&. It is important to notice that the threshol
value depends on the relative magnitude ofb and f (D),
higher values ofD being necessary to unlock the syste
when b/ f (D) decreases. From this analysis the twofold
fect of noise in the system is clear: on one hand, it ten
depending on the parameters, to unlock and/or increase
frequency; this can be seen by artificially giving a fixe
value to b/ f (D). On the other hand, there is the oppos
tendency coming from the functional dependence off on D.
This second aspect is hardly relevant in the small noise
gime, but it can help to understand at least qualitatively
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FIG. 3. Stationary probability densityPSS(r ,u), for model 2 for b50.99 andD51023 ~a!, b50.99 andD51022 ~b!, b51. and
D51023 ~c!, andb51. andD51022 ~d!.
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behavior for high noise. It must be emphasized that a str
ger dependence off on D can magnify the influence of thi
aspect on the dynamics.

For model 2, the effective equation for the variableu is
the same as the equation for the phase of the beat s
generated by a ring laser gyro. In Ref.@6# the spectrum for
this parallel model was obtained analytically forb@1, and
also for parameters corresponding to locking; and num
cally for the more interesting regionb.1, in which there is
a noise threshold value for unlocking, and that correspo
to the bifurcation region of models 1 and 2. For small no
these spectra have the same qualitative features as the
obtained in Ref.@1#: basically, when noise is increased the
is a shift of the peak frequency to higher values, and
increase in the width of the peak. For certain values of
parameters,D→0 andb.1, higher harmonics can be see
For very high noise the mean frequency would reach a li
value given by the biasb: the noise makes the existence
the periodic potential irrelevant and causes the bias to be
dominant feature. In Fig. 5, the mean frequency for mode
is represented for different values ofb andD.

We do not have analytical results for the high-noise
n-
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FIG. 4. Mean frequencŷ u̇& for model 1 against log10D for

b51.01 ~a!, b51. ~b!, andb50.99 ~c!.
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6522 56J. PLATA
gime, so we cannot explain the peak structure in the dep
dence of the frequency onD, and the disappearance of th
coherent oscillations. Nevertheless, the physical picture
tained for small noise give us some clues to speculate a
the qualitative behavior of the system for highD. As can be
seen in Fig. 1, whenD is increased, the system explores
its stationary state a larger range in the radial variable,
region of maximum probability being shifted to higher va
ues. In this case we cannot replacer in the Langevin equa-
tion for u by its maximum probability value, since the widt
of the radial distribution cannot be neglected, as can be s
studying the variance in Eq.~12!. Studying the system o
equations~7!, which are exact for any value of the nois
intensity, provides us with some ideas to conjecture wh
mechanisms are responsible for the nontrivial behavior of
system. First of all, we see that nearr max, the time evolution
of the two variables, radial and angular, is slow as compa
to the evolution for smallerr : the system spends more tim
near the asymptotic value of the deterministic radial eq
tion, and any increase inr implies a higher amplitude of the
effective periodic potential in the angular variable, and co
sequently larger barriers to the generation of probability c
rents. Therefore, we can think of two regions of maximu
probability, centered onr max and the two corresponding va
ues ofu, from which noise induced excursions take pla
Obviously the increase ofr max gives rise to a shift in the
maximum probability values foru: this explains the chang
ing orientation of the line of maxima observed in Fig. 4
Ref. @1#. In this way we can understand how the tendency
generate rotational probability flows, and increase the m
frequency that comes from the stochastic forces, can
counterbalanced by the larger localization of the system
higher values ofr . Second, it is clear from Eqs.~7! that when
the system reaches the region of smallr , it experiences large
uncorrelated jumps inu that favor the exchange of probabi
ity through the central region and lead to the loss of coh
ence. This qualitative picture allows us to understand
topological changes in the probability distributions detec
in Ref. @1# when D is increased. In effect, for sufficientl
large noise, exchanges of probability between the two ba

FIG. 5. Same as Fig. 4, for model 2.
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that correspond to the regions of maximum probability ta
place mainly through the region of smallr rather than
through the circle, and consequently the stochastic coun
part of the limit cycle, the circle hump, disappears. The pe
structure in the dependence of the frequency onD and the
disappearance of the preferred frequency can also be q
tatively understood: opposed to the shift to higher values
the frequency, which can be understood through the incre
in the mean frequency caused by noise, there is the incr
ingly incoherent behavior that enlarges the width of the pe
in the spectrum, lowers the value of the peak frequency,
eventually gives rise to the disapearance of the preferred
quency. It must be emphasized that whereas the increas
the frequency withD is a consequence of the nonlinear cha
acter of the system: noise tends to unlock the system
favoring diffusion in the effective biased periodic potentia
the lowering of the peak frequency and the suppression
the coherent oscillation can also be detected in linear syst
since they are a consequence of the loss of coherence
check the validity of these ideas, let us consider the follo
ing system, which is directly related to the conjectur
mechanism of loss of coherence for models 1 and 2, and
also represent the time evolution of the angular variable o
uniform limit cycle when noise is added,

u̇5b1D1/2G~ t !, ~32!

with

^G~ t !&50,
~33!

^G~ t !G~ t8!&52d~ t2t8!.

In this case the mean frequency does not depend on n

^u̇&5b, and the spectrum, which was obtained analytica
in Ref. @6#, reveals the existence of a preferred frequency t
decreases with increasingD, and vanishes above a nois
threshold that depends on the parameterb. Therefore it is
clear that in this last regime the dynamics is dominated
the random term. This gives arguments of plausibility to t
conjectures previously made for models 1 and 2 for h
noise.

In this framework it is also possible to understand why t
resonancelike behavior is not seen for small values ofb @1#:
the value ofD needed to generate the probability current
so high that it prevents the appearence of any preferred
quency in the spectrum.

IV. CONCLUSIONS

The main conclusion of this work is the idea that t
nontrivial effects found in the dynamics of the systems st
ied are a consequence of the interplay between the tend
of noise to unlock the systems and/or increase their
quency, and the loss of coherence also caused by noise
tends to diminish the frequency and destroy the collect
oscillations.

The mechanism of recovery of the limit cycle when it
not present in deterministic systems is quite clear in
weak-noise approximation employed here: additive Gaus
white noise can induce a probability current in a on
dimensional system with a periodic potential modified by
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bias term~the term linked to the parameterb in models 1 and
2!. In this framework, the system is unlocked when the no
intensity reaches a certain threshold, and any additiona
crease in noise gives rise to an increase in frequency,
also to a spreading of the peaks in the spectrum. In term
the bidimensional system, the unlocking is interpreted as
lowed by the specific character of the bifurcation that giv
rise to the cycle. In effect, as opposed to a Hopf bifurcat
in which a limit cycle becomes smaller and finally collaps
to a fixed point, in a saddle-node bifurcation the limit cyc
becomes slower and slower and eventually vanishes at
nite trajectory, allowing noise to activate a circulation in t
structure of the attractor.

The condition of equal noise strengths in the two eq
tions of each model is a key point in having coupled va
ables with a deterministic dynamics for one of them,r , that
depends on noise but does not depend on the second
able. This fact clarifies the mechanism behind the dra
effects of noise in the systems studied, and in a certain ex
allows the control by noise of the time evolution of anal
systems.

The resemblance of these results to the phenomeno
stochastic resonance is clear. Nevertheless, it must be
phasized that in models 1 and 2 of Ref.@1# the peak structure
in the signal-to-noise ratio as a function of noise is basica
a consequence of the definition of this ratio in terms of
frequency, since, as the widths of the peaks in the spect
become larger for higherD, it is the peak structure in the
frequency that is the dominant feature. The most typical s
nario for stochastic resonance, the driven quartic double w
in the high-friction regime and with Gaussian white nois
can be converted in an autonomous system by embeddi
in a bidimensional system with the angle variable havin
trivial time evolution@13#. In this bidimensional system with
v
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a noninvertible diffusion matrix, which as models 1 and
has nongradient drift terms, probability currents can ex
and, because of the nonlinearity of the problem, in addit
to the fundamental frequency, sharp lines corresponding
the higher harmonics can also be seen in the spectrum. H
ever, there is no noise-induced shifts of these frequencie
they are fixed at the frequency of the driving term and
harmonics, so the peak structure in the signal-to-noise r
as a function of noise has therefore an origin different fro
that responsible for the findings of Ref.@1#.

As we mentioned in Sec. I, sets of equations correspo
ing to models 1 and 2 can appear in the description of co
plex systems in which a process of averaging over dyna
cally nonrelevant variables has reduced the dimensionalit
the problem. The nongradient character of the drift term
which can have its physical origin in the averaging over va
ables whose dynamics are not time reversal invariant,
neccessary condition for the appearance of limit cycles in
secular motion and also for the appearance of irrevers
circulations in the stochastic system when the noise inte
ties are the same in the two equations of the reduced sys
As a lack of detailed balance can also be reached in a b
mensional gradient system by working with noise terms w
different characteristics for each variable, which is possi
from a physical point of view if there is some control ov
external sources of noise, it would be interesting to analyz
noise can induce the stochastic counterpart of a limit cycle
a system whose deterministic dynamics cannot present p
odic attractors.
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